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ABSTRACT
In this paper we derive a method for finding small amplitude high

frequency solutions to hyperbolic systems of quasilinear partial differential
o equations. Our solution is the sum of two parts: (i) a superposition of

small amplitude high frequency waves; (ii) a slowly varying ‘'mean solution'.

Each high frequency wave displays nonlinear distortion of the wave profile and
shocks may form. Shock conditions are derived for conservative systems.
Different high frequency waves do not interact provided the frequencies and
wave numbers of two waves are not linearly related to those of a third. The
mean solution is found by solving a linear partial differential equation.

This method generalizes Whitham's nonlinearization technique [9] for single
waves, to problems where many waves are present. We obtain these results by

generalizing a scheme first proposed by Choquet-Bruhat {1] which employs the i

| method of multiple scales.

AMS (MOS) Subject Classifications: 35160, 76N15
Key Words: nonlinear wave propagation, geometrical optics, acoustics, shocks,
hyperbolic p.d.e.'s

Work Unit Number 2 - Physical Mathematics
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SIGNIFICANCE AND EXPLANATION

Problems involving high frequency waves arise in many applications. For

example they arise in optics (light waves propagating through a medium of
slowly varying refractive index), acoustics (sound waves propagating through

the atmosphere) and oceanography (water waves propagating over a gently

sloping ocean bed). If the waves are sufficiently small in amplitude they

satisfy linear differential equations and there is a powerful theory for

calculating their behaviour called geometrical optics. Larger amplitude waves

may satisfy nonlinear equations, and then they display qualitatively different

effects from linear waves. The most significant effect of nonlinearity is

that waves can form shocks, surfaces across which the wave amplitude changes
sharply. The most familiar example of a shock is the sonic boom generated by
an aircraft in supersonic flight. 1In this paper we develop a generalization

of geometrical optics to small amplitude nonlinear waves which allows us to

calculate how they propagate, and to predict effects such as the formation of

shocks.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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WEAKLY NONLINEAR HIGH FREQUENCY WAVES
John Hunter
1. Introduction

In this paper we consider waves which satisfy nonlinear hyperbolic
partial differential equations. Work on such waves has been centered on one-
dimensional problems. The problems either involve only two independent
variables, usually time and one space variable, or involve only a single wave
and thus are essentially one-dimensional.

Here we develop a method for problems in any number of dimensions and
with any number of waves present. We call our method weakly nonlinear
geometrical optics, since it reduces to geometrical optics for linear
systems. It applies to small amplitude, high frequency waves which are
solutions of quasi-linear hyperbolic partial differential equations.

We obtain the first term in an asymptotic expansion for such a solution,
which is the sum of two parts: (i) a slowly varying mean solution; and (ii)
the superposition of a number of small amplitude, high frequency waves. The
profile of each high frequency wave in the superposition is distorted by the
nonlinear self-interaction of the wave. This can cause the solution for the
wave to become multivalued. To obtain a single-valued solution we must
introduce discontinuities, and for conservative systems we derive an equal
area rule that allows us to fit shocks into the wave solution.

We show that there is no interaction between different waves in the
superposition provided that (a) the mean solution is correctly chosen; and (b)

a certain resonance condition never holds. The mean solution must be chosen

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062, Modo 1.




so that an average of the wave profile is zero. Thus the mean solution is the
average of the first term in the asymptotic expansion. It is found by solving
a linear system of partial differential equations.

Resonance can occur when the frequencies and wave numbers of two waves
are linearly related to those of a third. This threefold resonance is a
consequence of the quadratically nonlinear interactions between the waves, and
a more general form of solution than that considered here must be used if
there is resonance.

The method by which we obtain these results is an extension of one
proposed by Choquet-Bruhat [1], and employs the method of multiple scales. It
gives exactly the same result for a single wave as the nonlinearization
technique proposed by Landau [2] and Whitham [3), and later derived by Varley
and Cumberbatch ([4], [5]) using the method of relatively undistorted waves.

The result that two small amplitude waves do not interact to first order
in the wave amplitude, has been found previously in one dimension by Mortell
and Varley [6] and Seymour and Mortell [7]. The present method generalizes
this result for high frequency waves to any number of dimensions.

An outline of the contents of this paper are as follows. 1In section 2 we
summarize the results obtained by the method of weakly nonlinear geometrical
optics. The formal derivation of the equations stated in section 2 for the
mean solution and the high frequency waves, is given in section 3. The equal
area rule for fitting shocks into the high frequency waves is derived in
section 4.

In the next two sections we compare our results with previous results.

In section 5 we show that Whitham's nonlinearization technique is a
consequence of the present method. This demonstrates the agreement between

weakly nonlinear geometrical optics, when applied to a single wave, and the




method of relatively undistorted waves, when expanded for small amplitudes.
Both methods reduce to the nonlinearization technique in the common case of a
single small amplitude wave.

In section 6 we consider time-dependent plane and spherically symmetric
waves in gas dynamics. The equations governing such waves involve only two
independent variables and therefore can be treated using the method of
characteristics. We verify the results of weakly nonlinear geometrical
acoustics in this case by showing that they also follow from the method of
characteristics. In particular we see that two waves do not interact if the
mean solution is chosen as described above.

In section 7 we discuss conditions under which resonance can occur,
giving necessary and sufficient conditions for it to happen. This gives us
the conditions under which a solution consisting of the superposition of non-
interacting waves is applicable.

In section 8 we consider systems with multiple characteristics and show
how the results above are modified, assuming that the multiplicity of
characteristics does not change.

Finally in the appendix we apply the method to the gas dynamics
equations. The result is a theory of weakly nonlinear geometrical
acoustics. Applications of the theory will be described in a future paper.

I wish to thank Professor J. B. Keller for suggesting this problem to me 1
and for many helpful discussions during my work on it. This work was
performed while the author was at Stanford University and I am happy to

acknowledge their support.
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2. sSummary of Weakly Nonlinear Geometrical Optics

We consider a strictly hyperbolic system of quasi-linear first order

partial differential equations

To(4)
(2.1) I a (x,u)u_ + B(x,u) =0 .

i=1 i
In (2.1) x = (x1,...,xn) is an n-vector, B and u = (u1,...,uN) are N-

vectors and each A(i)

is an N X N matrix. Usually one of the independent
variables x4 is time. We assume that A(i) and B are continuously
differentiable with respect to u.

The weakly nonlinear geometrical optics solution to (2.1) is

)

m
(2.2) u = a(x,e) +¢ § a P, x1/e)rI (%) + 0(e?) (a8 €+ 0) .

j=1
The derivation of (2.2) is given in section 3. Here we explain what the
various functions appearing in (2.2) are and how they are determined.

Equation (2.2) represents u as the sume of a mean solution u and a
superposition of m small amplitude high frequency waves a(j)R(j). The
small parameter € is introduced into the problem through initial and
boundary conditions. It is the ratio of a typical dimensioned wave amplitude
relative to a parameter with the same dimensions appearing in the problem. It
is also the ratio of a typical wavelength relative to the length scale over
which a wave is modulated. We assume that dimensionless variables can be
chosen in the original problem leading to (2.1) so that both the wave
amplitude and the wavelength are 0(€).

Now we describe how to calculate the functions in (2.2). The mean
solution u satisfies (2.1) to 0(e). For u reqular in € we expand it as

=@

(2.3) (x) + €v(x) + 0(e?) .

We use (2.3) in (2.1), expand A(i) and B in Taylor series about u = u(o),




ey

e

; . and formally equate to zero the coefficients of eo and E1. It follows

that u(O) is a solution of (2.1), and ;(x) satisfies the system of

equations that results from linearizing (2.1) about u = uf0),

n n
(2.4) X A(i)(x,uw));x + X A;i)(x,u(O));uio) + Bu(x,u(O)); =0 ., ;
i=1 i i=1 i
N
The notation A,v means X Au vj. We suppose u(o)(x) is a known
=1 3]

function, and then ;(x) is found from (2.4).

The sum of terms aldg(d) in (2.2) is a superposition of high frequency 1
' waves. The jth wave depends on the rapidly varying phase O(j)(x)/e, and the
wave is proportional to the vector R(j)(x) determined by the phase function

(3 (j)(x)/e) is the amplitude of the wave (if r(Y)

¢(j). The scalar a (x,¢
is normalized to unit length).
The mean of the wave amplitude over the rapidly varying phase is required
E to be zero. That is

(2.5) m (3 /7 a3 (x,0)48) =0 .
T’O

In (2.5) the mean is taken over ([0,®), but it could equally well be taken

over any other gemi-infinite or infinite interval.

The functions ¢(j), R(j) and a(j) are determined as follows. Each
phase function satisfies an eiconal equation !
T oL (1), (0)
(2.6) get( ] ¢ VA" x,u") =0 .
x
i=1 i
Notice that (2.6) really is an equation for ¢(J) because A(i)(x,u) is
evaluated at u = u(o)(x).
Equation (2.6) is a first order partial differential equation for a
scalar. Therefore it can be written as a system of ordinary differential

equations along a set of curves in R". These curves are the rays or

bicharacteristics of (2.1) which correspond to the solution u = u(o) and the

-5e




)

phase function ¢(J .« We introduce ray coordinates (sj,Bj 1,...,B. ),
’

j,n=1

where sj(x) is a function of arclength along a ray and Bj(x) =

(Bj,1""'8j,n-1) is constant on each ray.

Then [8] the rays are solutions of

(i) (0)

(j)(x)A (x,u

(2.7) =1L ROV () (1= 1,0000m) .

ds
ij

In (2.7) L(j) ana R(J) (the vector appearing in (2.2)) are the left and

right null vectors of the matrix

n
(2.8) 1 ¢;j)A(i)
=1 5

In (2.8), and in the future, we omit showing explicitly that A(i) and B
are evaluated at u = u(o). Since (2.1) is strictly hyperbolic L(j) and

R(j) are uniquely determined up to a scalar multiple.

h

The amplitude of the jt wave is given by

(3 _
(2.9) a Fj(Bj,Cj/E)Ej(Sj,B ) .

3

In (2.9) Fj is an arbitrary function with zero mean, which describes the

wave profile by its dependence on [ _,/€. The factor E. in (2.9) describes

3 j

the modulation of the wave amplitude due to inhomogeneities and changes in the

ray geometry. It is

8 n N .
(2.10) E, = exp{-f () LA, (00 L (g )y aey
3 89 =1 3 % u J

The integral in (2.10) is taken with respect to sj along a ray Bj =

constant. The integral is taken from an arbitrary point Bj = so(B ) on the

b

raye.

The wavefronts of (2.9) are given by Cj = constant. The modified phase

{(x,€) 1is defined implicitly by

b
(3)
.1 = -
(2.11) Cj ¢ eFj(Bj,C

function §

j/8)1j - exj

6=




1 2.11 I1.{s.,8.) and K.(s,,B.) are given b
n ) IylsyePy '3 9 ¥

3

n 8, .
1= ) [ 03, g0)g 4
3 4=1 % 3 u 3 3
(2.12)
n 8. .
I 1=1 7% X v J

The integrals in (2.12) are taken along a ray as in (2.10).

The expression (2.11) for 3§ involves only Fj and does not depend

3
= ' on Fy for any k ¥ j. The different high freguency waves are completely

uncoupled.

If (2.1) is linear then Cj = Q(j) and the wavefronts are given by

() = constant. Equation (2.11) expresses the fact that the wavefronts

¢

<
- Cj = constant differ from level surfaces of Q(j)

because (2.1) is
nonlinear. The term t':li‘jI:j in (2.11) gives the correction to the wavefronts
because of the waves nonlinear self-interaction. The term exj gives the
effect of the departure of the mean solution u(x,€) from u(o)(x).

Although both the correction terms in (2.11) are small in magnitude the

nonlinear case is qualitatively different from the linear one. In the

’ nonlinear case (2.11) defines Cj(x,E) implicitly, and because of this Cj

3 ' . can become a multivalued function of x. Then a discontinuity or shock must

(3

be introduced into the solution for a(j) in order to make a a single-

valued function of x.

For a conservative system such a shock satisfies an equal area rule.
Suppose that the ray Bj = constant meets a shock in the jth wave at
sj = f(B,). Denote the two wavefronts meeting the shock at this point by

3

Cj = 21(3j.€) and ;j = zz(Bj.E). Then 2z, and =z, are related by the

equal area rule




(2.13) [ %F

1
z, j(Bj,C/E)dC =3 (zz-z1){Fj(B

j,z1/e) + Fj(Bj,zz/E)} .

We also have from (2.11) and the definition of z4 and z, that

(2.14) z, = ¢'3) _ ep By /E)Iy - exy (k= 1,2) .

j
All functions of x in (2.14) are evaluated at sj = f(Bj). Equations (2.13)
and (2.14) provide three equations for the unknown functions z4, 2, and
f. These equations are essentially the usual equations for weak one-
dimensional shocks as described in [9]).

Now we briefly describe how to use these results to solve an initial-
boundary value problem. Suppose we are given boundary values for a small
amplitude high frequency perturbation about a solution u(O)(x) of (2.1)

which is assumed known. For example in gas dynamics u(o)

might correspond
to gas at rest with constant density.

We choose dimensionless variables in which the perturbation amplitude is
0(e) and the frequency is 0(1/€). Then v(x) is found by solving (2.4), a
linear system of partial differential equations, subject to boundary values
obtained by taking the mean of the perturbation's boundary values over the
fast phase variables. The infinite or semi-infinite interval over which each
fast variable is averaged may be choosen so as to make the boundary values for
v as simple as possible.

Next the m phase functions ¢(j)(x) are found by solving (2.6), which
can be done by integrating a system of ordinary differential equations.

(3 (3)

Initial conditions for ¢ are chosen so that ¢ takes the same value

on the boundary as the appropriate rapidly varying function on which the
(3)
¢ b

boundary values depend. Once is known it is an algebraic problem to

calculate the corresponding null vector R(j).




Toxe .

The amplitude a(j) is given by (2.9) and the function Fj is chosen to
make (2.2) agree with the boundary conditions. The function Ej is given in
(2.10) and the modified phase variable Cj is found from (2.11). If shocks
form they are fitted into the solution using (2.13) and (2.14). This
completes the solution of the boundary value problem. As an example of this
procedure, a general initial value problem for the unsteady one dimensional
gas dynamics equations is solved in section 6.

There are two limitations on the use of (2.2). Firstly the results above
apply to the nonresonant case. Resonant interaction between the jth wave and
the kth wave (j #k) can occur if there are nonzero scalars cj(x) and
ck(x) such that the vector p{x) defined by

(3) (k)

(2.15) p= ch¢ + ckv¢ ,
satisfies the eiconal equation

v (1)
(2.16) get{ ] pa'}=0 .

i=1
The results above apply provided (2.15) and (2.16) do not hold for any
digtinct j and k at any x. Included in this condition is the case

p = 0, when V¢(j) (k)

and V¢ are parallel. This condition is a sufficient
condition for resonance not to occur. A necessary and sufficient condition is
derived in section 7.

A second limitation on the use of (2.2) is that in general the expansion
will break down for large times of 0(1/€). One source of this nonuniformity
is the expansion (2.3) of u. Another is the cumulative effect of lower order

(cubic) nonlinearities which we expect to become significant after times of

0(1/e). 1If necessary one could extend the validity of (2.2) to larger times

by introducing further multiple scales X = Ex.

. L




wWhen (2.1) is linear the equations summarized above reduce to those of
geometrical optics. We finish this section by stating the major effects
introduced by the nonlinearity of (2.1). There are three. Firstly for there
to be no interaction between different waves the mean wave profile (2.5) must
be zero. Secondly the wavefronts zj = constant are distorted by the
nonlinearity according to (2.11), and this can cause shocks to form. Lastly

there is the possibility of resonant interactions between waves when (2.14)

~holds.




3. Derivation of the Equations

In this section we derive the equations for v(x) and afd) stated in
section 2. Following Choquet-Bruhat [1] we shall seek small amplitude, high

frequency solutions to (2.1) of the form

(Y

(3.1) u (x) + ev(x,0,e) .

In (3.1) u(O) is a solution of (2.1), as before, and 0 = (91,...,9m) where

(3)

ej = ¢(j)(x)/€. The v and ¢ are to be determined. The difference

between (3.1) and the form of v used by Choguet-Bruhat is that in (3.1) v

depends on m fast variables 6 instead of just one. This allows the

3

presence of many waves, permitting us to deal with the interactions between
them.

We shall use the method of multiple scales, in which x and 0 are
treated as independent variables, to obtain an asymptotic expansion for v as

€ + 0, We shall assume that v, v

Xy and Ve are bounded functions of «x

i
and © and that v(x,0,e) has an asymptotic expansion as € + 0 of the form

(0)

(3.2) vix,0:€) = v{®(x,8) + ev!V(x,8) + 0(e?) .

We now use (3.2) in (3.1) and substitute the result into (2.1). Then we
expand A(i)(x,u) and B(x,u) in Taylor series in powers of € about
u= u(O), and replace the partial derivative 3%— by

i
(3

2
x a6

2 1 ¢
— - Z ¢
3xi € .- 4 3

j=1
Equating to zero the coefficients of eo and 81 in the resulting formula

gives the following equations:

m n
(3.3) ! 1 ¢:(j)a‘“vé°)-o ,

j=1 =1 i 3

-tq~




m n . n i
(3.4) J J ¢i3)h(i)vé1) --|7 (A(i)viO) + Aii)v(O)uLO)) !
j=1 i=1 5§ 3 i=1 i i

m n .
+ z z ¢(j)A(1)v(0)vé0) + B v(o) .
J=1 i=1 =4

In (3.3) and (3.4) a(i), Aii)

and B are all evaluated at u = u(o).

For a single wave propagating along the j-th characteristic only one term
in the sum over j in (3.3) appears, and therefore it is zero. Motivated by
the idea of extending the superposition of single waves from the linear to the

weakly nonlinear case, we shall look for solutions such that each term in the

sum over j in (3.3) vanishes separately. Therefore we suppose that

n .
(3.5) z ¢(J)A(i)(x,u(o))véo) =0 for 3 = 1,eee,m .
. x
i=1 i h)
In order for véo) to be non-zero the matrix in (3.5) must be
3
singular. This gives the eiconal equation (2.6) for ¢(j)(x). Also véo
j

must be parallel to the right null vector R(j) of (2.8). Therefore we seek

(0)

a solution for v of the form

n
(3.6) w0 . vix) + ] a

=1

D ix,0 - (x) .

3

Clearly (3.6) satisfies (3.5) for an arbitrary vector function v(x) and
(3)

arbitrary scalar functions a (x,ej). It is not the most general form of
the solution to (3.5), but we shall see that a solution of this form can be
found in the absence of resonance.

Without any loss of generality we take v(x) in (3.6) equal to the mean

MUY (0)

of (x,8) with respect to 6. The mean of v is defined because

0)

v( is a bounded function of 6 at each x. Then the mean of each

a(j)(x,ej) with respect to Gj is zero. Thus:

-12~




3

(0)

v(x) = lim {l; fg---fg v

(x,0)30 eeedo } o,
e P 1 n

{(3.7)
1T (D)
lim {T fo a "' (x,9

)ae.} = o0 .,
T 3

3

The functions v and a(j) will be found from solvability conditions for

(3.4).
The average of the derivative of a bounded function is zero. If the

(0) and v(1) must

expansion (3.2) is uniformly valid for all x and 0, v
be bounded functions of x and 6. We use (3.6) in (3.4) and average the
resulting equation over 61,...,0m. The average of the left hand side is zero
and we obtain equation (2.4) for the mean ;(x).

We obtain equations for the m scalars a(j)(x,ej) by using (3.6) in
(3.4), averaging the result over all Gk for k # j, and then taking the
scalar product with L(j), the left null vector of (2.8). The left hand side
of (3.4) is annihilated and we obtain an equation for a(j). In this equation
we recognize the sum of partial derivatives with respect to the x; as a

h set of rays (2.7). We rewrite the sum of

(3)

directional derivative along the jt

these derivatives as a derivative with respect to sj and find that a

satisfies
. n . . . . . .
a(J) + 2 {L(J)¢(j)A(i)R(j)R(j)a(J) + L(J)¢(J)A(l);R(J)}a(j)
sj i=1 x, u xi u ej
(3.8)
+ L(j)Q(j)a(j) =0
In (3.8)
n .
(3.9) Q(j) - z (A(i)R(j) + A(i)R(j)u(O)) + B R(J) .
i=1 Xy u Xy u

The coefficient of aéj) in (3.8) is the propagation speed of disturbances in

3

the (sj,ej) plane.

-13=




The equations for the scalars a3 are uncoupled. No a(k) with

k # 3 appears in (3.8). Equation (3.8) is a nonlinear equation for atd) in
two independent variables. It reduces to the transport equation of (linear)
(3)
8.

]

geometrical optics if equation (2.1) is linear, when the coefficient of a
in (3.8) is zero.

If the resonance condition (2.4) holds then there is a stronger
solvability condition than (3.8) for (3.4) and it is not always possible to
find a solution of the form (3.6) for v(®)| ohis is discussed further in
section 7. Here we assume that there is no resonance.

Then ald) gatisfies (3.8) which we can integrate by introducing

characteristics. Let i
n N . .

M. (s ’
b R M | i=1 xi u k
§ (3),(3), (1)=_(3)
(3.10) N.(s_.,B8.) = L'7°¢ °'A "'VyR
s R R | 1=1 x, u
o 1(3)n(3)
pj(sj,Bj) L9
Then (3.8) is
(3.11) a(j) + (M a(j) + N.)a(j) + P a(j) =0 .
s 3 378 3
3 ]
We may write (3.11) as
4 (3 | _p a(3)
(3.12) as a Pja R
b
on the characteristic curves
4 (3)
01 _e = .
(3.13) as. Oy Mja + Nj

The solution to (3.12) is

(3 _
P (B BIE (8,08

In (3.14) Pj is an arbitrary function depending on 8

(3.14) a
3 and a scalar £

which parametrizes the set of characteristic curves (3.13). The function

Ej is defined by (2.10).




i

We use {(3.14) in (3.13) and integrate keeping & constant. The result

is
%) *
3.15) 8, = Fy(B,,8) [7 M (s,8,)E (s,8,)a8 + [0 N, (s,8,)a8
+ Ej(Bj.E) .
In (3.15) xj is an arbitrary function which determines how £ parametrizes
the curves (3.13). Usually we take Ej(Bj,E) E §.

The final step in the method of multiple scales is to let

0, = 03 (x)/e. we use this in (3.15) and also let £ = T./¢ in (3.14) and

b
(3.15). Then we obtain (2.9) from (3.14) and (2.11) from (3.15) after
multiplying through by €.

The only equation that we still have to derive is the equal area rule

(2.13) and we shall do this in the next section.

-15=




4. Derivation of the Shock Conditions r
In this section we suppose that (2.1) comes from a conservation law and
derive the equal area rule {(2.13) for a(j) from the Rankine-Hugoniot shock ]
conditions for (2.1).
Therefore suppose that (2.1) can be written in conservation form
n
(4.1) 1 {v'(“(x,u)}x + H(x,u) = 0 .
i=1 i
In ( 1) r“’ and H are N-vectors such that
(1) (1)

!'u (x,u) = A (x,u) ,

(4.2)

n
H(x,u) + } it

x (x,u) = B{(x,u) .
i=1 i

The P(i) correspond to conserved quantities, and H is the source density {
of these quantities.

The generalized Rakine-Hugoniot shock conditions for (4.1) which hold
across a shock front, are

(4.3) I (rF
i=1

In (4.3) [F(i)] denotes the change in F(i) across the shock front, and

n 1is the normal to the shock.

We consider the jth wave with amplitude al3?, Linear theory predicts

¢(j)

that a shock in this wave travels along the linear characteristics (x) =
constant. This should be the zeroth order result for weakly nonlinear

waves. We suppose that the position of a shock in the j-th wave is given by
(4.4) h(x,0;€) =0 .

From the linear theory h(x,0;0) should be a function of x and Gj alone,

since then the shock position is




(1

¢

(x) = constant + 0(€) .
Therefore we seek a power series expansion of (4.4) in the form

(0 (D (x,0) + 0(e?) .

(4.5) h(x,0;€) = h (x,ej) + €h
We assume that h(o), h(1) and their derivatives are bounded functions of
x and 6.

The normal n to the shock front is proportional to Vh and its

component ny is proportional to

(9,000 L, (0) | F 00 (1)
(4.6) h M + ) ¢, + 0(g) .
X e Xy ej xi k=1 i e

We use (3.1) and expand [F(i)] in a Taylor series in powers of € about

u(o). We agsume u(o) is continuous across the shock. Using (4.2) this
gives
(4.7) R I R T U IE T AT PR L I TEL I

We us: (4.6) and (4.7) in (4.3) and equate the coefficients of eo and

61 to zero. This gives

n
(4.8) N Sl (AL I I
j i=1 i

n
(4.9) ni? 3 ¢ 11y o {j n{ 1,0 (01 (0,

j i=1 X3 3 i=1 %30 Y
n
o ] n(@,00 (0,
i=1 i
(s (1), 00, (1) _(0)
f 17 he 4 w1 .
i=1 k=1 i

Equation (4.8) is satisfied if [v(o)] is proportional to R(j). Therefore
we suppose that v and a(k)(k#j) are continuous across the shock. Then
from (3.6)

(4.10) vl®) = (a3
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Now we use (3.6) and (4.10) in (4.9). We average the resulting equation

over all ek' k # j, and take the gcalar product with 1 3). The result is

n . s . . : : N
RIS { 3030, (IR 3), 000 | 1 (502 103D (3D, (1) (3D (3)
i=1 *o 2 i S

NERCEPME N INCHIEACIINE LN (0)} —o .

*i 3
In (4.11) the sum of partial derivatives with respect to X; can be written,

as before, as a derivative with respect to 8y. Then we divide (4.11) through

by [a(j)] to obtain:
n . . N
(4.12) n'0 4 ) L(j)¢(j)ALi)R(J)R(J)<a (3),

85 i=1 Xy

o 120,30, 1) 5 () (95, (o)} -o .
x, u ej

In (4.12) we have written [a(j)zl/zla(j)] as <a(j)> where

(4.13) <«a'ds = {a(j) + 2l

In (4.13) aij’ and aij)

are the limiting values of a(j) on the two sides
of the shock, and <a(j)> is their average.

We claim that for systems derived from a conservation law, if § and
T are any N=-vectors,

(4.14) A(i)ST = Aii)TS .

Proof. From (4.2)

(i)

(i) 3?1
jk 3\1k *

Therefore
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We use (4.14), with § = R‘3) ana T =%, in (4.12) and divide through by

h(o) to obtain the following expression for -h:O)/héo), which is the speed

B R T SR

% 3%

: of the shock in the (aj,ej) plane:
n

. -h(o)/héO) - {L(j)¢(j)A(1)R(j)R(j)<a(j)>
. 8y 3 4o x, u
: (4.15)
3
£ (3),(3),(1)=_(3)
_ + L7797 VR }

i

Comparing equation (4.15) with (3.8), we see (4.15) expresses the well known
fact that the speed of a weak shock is the average of the propagation speeds
on the two sides of the shock. The shock problem (3.11) and (4.15) always
involves only two independent variables, lj and Oj, however many

| independent variables there are in (2.1), and the equal area rule (2.13) then

? follows from (4.15) exactly as described in [9].




S. Comparison with the Nonlinearization Technique
Laudau [2] and Whitham {3] independently proposed a technique for

nonlinearizing geometrical optics. 1In the technique, the deviation of the
rays from their linear position is neglected, but in treating the propagation
of disturbances along the rays the first order nonlinear correction to the
propagation speed is taken into account.

We consider a single wave propagating on one family of characteristics
with amplitude a. Whitham describes the nonlinearization technique, as
follows ([9].

Geometrical optics provides a ray geometry and gives along each ray
(5.1) a=£(¢)E(8) .

In (5.1), 8 is arclength measured along the ray. The function E(s) gives
the wave amplitude, £(¢) gives the wave profile, and ¢(s) is the phase

defined by

8 ds'

(502) ’(s) =t - 0 co(s.)

In (5.2), cy(s) is the velocity at which disturbances are propagated along
the ray according to linear theory.

The nonlinear velocity on the ray c(s,a) is expanded for small a as
(5.3) c(8,8) = ¢ (s) + c (s)a + 0(a?) .
Then the result of nonlinearizing (5.1) is
(5.4) a = f(T)E(8) .
In (5.4), the nonlinearized characteristic variable T is defined implicitly

by

s ds'

{5.5) t - 0 337:77

=T = £(1) f: c1(s')c;2(a')z(s')ds' .

We show that (5.4) and (5.5) follow from weakly nonlinear geometrical

optics. Let the wave amplitude be €ca. Then a satisfies equation (3.11).




e

That is

(5.6) a_ + {M(s)a + N(s)}ae + P(sla=10 |,

In (5.6), M(s), N(s) and P(s) are given by (3.10). also 6 = ¢/e, where
¢ 1is a solution to the eiconal equation (2.6). We may take ¢ to be given
by (5.2), provided the matrices A(i) are independent of t.

Suppose we linearize (2.1) about u = ul®)

and use linear geometrical
optics. The transport equation is obtained by dropping the terms in (5.6)
proportional to the square of the wave amplitude. That is we drop M(s)aae,

and N(s)ae since N(s) is proportional to the mean v(x). }

-

Thus the equation for a obtained by linear theory is
(5.7) aj + P(sla=10 .
The solution to (5.7) is
(5.8) a = F(9)E(s) .
In (5.8), F(6) is an arbitrary function and E(s) is given by (2.10).
Let us compare (5.8) with the solution according to the weakly nonlinear

theory. We write (5.6) as
da

(5.9) as ' P(s)a=0 ,

on

(5.10) 8 = M(s)a + N(s) .
ds

The solution to (5.9) is

(5.11) a = F(§)E(8) .

We use (5.11) in (5.10) and integrate taking our constant of integration to be

E. Then we let 0 = ¢/e, use (5.2) and multiply through by €. 1In this way

we find that

8 ds’

(5.12) t -/, o (87

= €£ + eF(E) I: M(s')E(s')ds"

+ € f: N(s')ds' .

-2 -




2

We see from the weakly nonlinear solution (5.11) and (5.12) that the
amplitude a has the same form as in the linear theory, but the
characteristic variable &£ is constant along characteristics (5.12)
determined using nonlinear theory. This is just what is supposed in the
nonlinearization technique.

Wwhen N(s) = 0, (5.4) and (5.5) agree exactly with (5.11) and (5.12) if
we let T =¢€¢§ and f£(T) = €F(T/€), provided

(5.13) M(s) = -c (s)c 2(s) .

0 (
We show that (5.13) is the case.

Suppose u satisfies

n :
(5.14) u_ + Z A(l)(x,u)u + B(x,u) = 0 .
t X,
i=1 i
The eiconal equation is
T (1)
(5.15) det{s 1 + ) ¢ A Yixaw)l =0 .

i=1 i

The phase speed c(x,u) equals -0t/|V0l, and from (5.15) satisfies
T (1)

(5.16) det{c(u)r - ] na"(w}=0 .
i=1

The speed ¢ also depends on the direction of the normal to the

vé
characteristic surface, n = TVET « We omit showing the dependence of ¢

and A(i) on x in (5.16).

Let L(u) and R(u) be the left and right null vectors of

(i)(u). Then

n
clu)t - ] n.a
. i
i=1 n
(5.17) I n.a
, i
i=1
We expand about u = 0 (there is no loss in generality in taking u(O) = 0):

(i)(u)R(u) = c(u)R(u) .

-22=~
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c(u) = <, + cuu + O(uz) .
2
R(u) = R + Ruu + 0f(u’) ,
(5.18) 2
L(u) = L + Luu + 0(u™) ,
n . n . n
] naPw = § oaatt e 7 oa Ay +0?)
. i . i . iu
i=1 i=1 i=1

On the right hand side R, L, A(i) and their derivatives are evaluated at
u = 0.

We use (5.18) in (5.17) and equate coefficients of powers of u. Then

n
(5.19) .E nia(“p = c,R
i=1
n n
(1) _ ot (i) _
(5.20) (21 nA Ty cqu)R = \121 n,A coI)Ruu .

n
From (5.19), R is the right null vector of E nih(i) - c4I.
i=1

Similarly L is the left null vector. Then we take the scalar produce to

(5.20) with L and solve the resulting equation for c,u. We find

n
7 on.a'tlur
j=_ bt 0

(5.21) Cuu = LR .

To find the velocity along the linear rays, we fake N, = ¢ /19¢|  in
i
(5.21) where ¢ is given by (5.2). Then since ¢ = -¢t/|V¢| and ¢ = 1.

(5.22) n, = -c ¢ .
i o'x
i
Next the derivative with respect to s in (5.6) is taken along the rays

at _ d L
{(5.23) as LR , as xi LA R .

We differentiate (5.2) with respect to s, and use 4¢ = 0, since ¢ 1is

constant on the rays. The result is

a _ -
ds 0 °

(5.24)

e




Therefore from (5.23) and (5.24)

(5.25) LR =c .
(This is the normalization of L and R required so that the parameter s
is arclength.)

We use (5.22) and (5.25) in (5.2). Then

(i)
¢x_LAu uR .

(5.26) c

[+
[
]
Q
oN
I-M:

Finally we let u = aR in (5.26), and use the result in (5.18). Then

(5.27) clu) = ¢ - acﬁms) + 0(a®) .

0

(i)

u RR = M(s). Now, ¢ was

n
In (5.27), we have used (3.10) to write Z ¢x LA

i=1 i
expanded in the nonlinearization technique as (5.3). We see that (5.13)
follows from (5.3) and (5.27). This shows that for weak waves the

nonlinearization technique follows from weakly nonlinear geometrical optics,

when we apply it to single waves (N = 0).
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6. Comparison with the Method of Characteristics

Systems of hyperbolic equations in two independent and two dependent
variables can be solved by introducing characteristic coordinates [10]. 1In
this section we show that the results calculated using characteristic
coordinates for the one dimensional gas dynamics equations agree to 0(¢€)
with those calculated using weakly nonlinear geometrical acoustics.

The gas dynamics equations for plane (N = 0) axisymmetric (N = 1),

and spherically symmetric (N = 2) flows are

ct + ucx + 151 c(ux + N %) =0 ,
{(6.1)
u + uu + 2 cc =0 .
t X Y-1 X

In (6.,1) u 1is the gas velocity and c¢ 1is the local sound speed. To be
definite we shall consider an initial value problem for (6.1), and take as

initial values

c(x,t=0} = <y + €c0g(x,x/e) + 0(62)

(6.2)

u(x,t=0) = scof(x,x/E) + 0(€2) .
In (6.2) £f(x,8) and g{(x,0) are arbitrary continuously differentiable,
bounded functions.

Here we shall solve (6.1) and (6.2) for plane and spherical flows. The
results for axisymmetric flows are entirely analogous to those for spherical
flows, although the formulae are more complicated. The details are given in
[11),

We shall solve (6.1) and (6.2), first by weakly nonlinear geometrical
acoustics and second using characteristic coordinates. Then we shall show

that the two solutions agree.
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To solve (6.1) and (6.2) by weakly nonlinear geometrical acoustics we
seek a solution of the form (A.16) with co(x,t) = ¢ and U(x,t) = 0. 1In

this one-dimensional problem there are only sound waves. The phase functions
(3)

¢ (x,t) satisfy (A.7) which is
(3),2 _ 2,,(3),2 _
(6.3) (¢t ) co(¢x ) o .

We want the fast variables ¢(J)/6 in (A.16) to equal the fast variable x/€

appearing in (6.2) at t = 0. Therefore
(6.4) ¢ (x,e=0) = x .
. () _ ()
There are two solutions, ¢ = ¢ , to (6.3) and (6.4):
(6.5) o) (x,6) = x ¥ ct -

From (A.18) the corresponding null vectors are

(6.6) R = o ! .

12/(Y-1)
where we have chosen the arbitrary scalar Xt in (A.18) to be
(6.7) kt = t2c0/(Y-1) .

Using (6.5) and (6.6) in (A.16) we have

c c E(x,t) x-c .t 1
(6.8) =9 +¢ _ + ecoa(+)(x,t. eo )
u 0 u(x,t) 2/(Y=1)
x+c_ t
+ Ecoa(-)(x,t, eO ) L + 0(62) .
=2/(y-1)

The means ¢ and u satisfy (A.17) with U =0

- ‘Y-1 - E -
(ux + N x) o ,

¢ * 72 S
(6.9)
2 S -
. =1 cocx =0 .
Initial conditions for (6.9) are found by averaging the initial conditions

(6-2) for (6-1):
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cix,t=0) = g(x) ,
(6.10) _ -

u(x,t=0) = £(x) .
In (6.10) we have defined

(6.11) f(x) = lim {% fz £f(x,8)ae}, ;(x) = lim {% fg g(x,0)ad} .
b ad T™*0

For N = 0 the solution to (6.9) and (6.10) is

c = Eo(x-cot) + qylxec )

(6.12)
- 2 - -
u=3Zg fpo(x-cot) - qo(x+cot)} P
where
c
py(x) = 52 {131 £(x) + g(x)} ,
(6+13) _ c
q,(x) = 5= 9 ¢- (—)f(x) + g(x)} .
For N = 2 the solution to (6.9) and (6.10) is [9]
= pz(x-cot) + qz(x+cot)
x ’
(6.14) - - - -
= _ 2 {pz(x-cot) - qz(x+cot) ) Pz(x-cot) - Qz(x+c0t)}
Y-1 x 2 ’
X
where
.0 = L5 0 = 22 (2 e + L1 X Exhaxt + x3tx)
2 dx ©2 2 2 x© * o xgix ’
(6.15) c
- - 0 -1, = - - -
(0 = = 8,0 = 5% (-(ShxEea - () Exaxt + x30} .
Now we calculate a(t). Ray coordinates (st'Bt) corresponding to
O(t) are
(6.16) 5, = X x cot ’ Bt = x + cot .




With ray coordinates (6.16) we must take U in (A.8) to be

b
- a2
(6.17) uj = =c, /2 .
From (6.5) we have
(£) _ 2,,(8) _ _ 2
(6.18) ¢tt coA¢ = Nco/x .

We use (6.17) and (6.18) in (A.10) then integrate with respect to

8 =x ¢t cot along the ray Bt = x + cot = constant. This gives

%
(6.19) E(:t:) T

Equation (6.19) is the usual result of linear geometrical acoustics: the
cross-sectional area of a ray tube increases like xN, so the wave amplitude
decays like x-N/2 in order that energy (which is proportional to the
amplitude squared) is conserved along the ray tube.
. We use (6.19) in (2.9) and obtain

a't) - FLN)(x TERY ct/t:)x'w2 .

are found from the initial conditions. The fast variable

2 (6.20)

The functions FLN)

§,/€ in (6.20) should equal the fast variable x/¢ in (6.2) at t = 0. 5

Therefore
(6.21) Ct(x,t=0,€) =X .

Then we use (6.20) in (6.8), substitute the result into (6.2), use (6.21), and

solve for FLN). This gives

l ; . N/2 _
| e x,eze) = 2 L (ex,ere) - B} ¢ B {g(x,8/6) - 30},
(6.22)
- - N/2 -
rV xieze) = V2 L (eix,eze) - B) + B (gixigre) - G0}

We use (6.5), (6.7), (6.16), (6.17) and (6.19) in (A.11) and integrate.

To satisfy (6.21) we take 80(81) = Bt so that Ct = ¢(t) =x at t =0,

when st = Bt' Thus we find 1

-28-
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x+c t
S (¥ X (M - (N) i 0 =, =
(6.23) ¢ =¢ € yoy Fy  (x¥ot,8./€0n " (x,t) * ey fx_cot(Ctu)dst .

In (6.23)
(0) _
ht tcot .
(6.24) h(2) = log .
t -
x+c0t

The integral of ¢ and u in (6.23) is taken with respect to st keeping
B, constant.
+ n
This completes the solution of (6.1) and (6.2) by the method of weakly
nonlinear geometrical acoustics. The solution is given by (6.8). In (6.8)

c and u are given by (6.12) and (6.13) (N=0) or (6.14) and (6.15) (N=2).
The amplitudes a'I’ are given by (6.20) and (6.22) - (6.24).
Now we solve the same problem using characteristic coordinates. When

written with respect to characteristic coordinates A and B (6.1) become

8]

1% "Wt Tx B0 Xy T ey,
(6.25)
2 Nuc
—— —_— = = + .
-1 % * % * & tg =0 4, x; = (u clty

Without any loss of generality we can impose that A =B =x at t = 0. Then

from (6.2) the initial conditions for (6.25) are

c(A,B=R) = ¢, + £c g(A,A/e) + 0(e?) , x(a,B=A) = a ,

(6.26)
u(A,B=A) = €c £(a,A/€) + 0(e?) , t(A,B=A) = 0 .

wWe shall solve (6.25) and (6.26) by seeking a generalized asymptotic

expansion for ¢, u, x and t of the form
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c = co + ec(1)(A,B,e) + o(ez) R

u=cu@,B,e) +0(e?)

(6.27)
X = x(O)(A,B,E) + Ex(1)(A,B,e) + 0(62) R
t = t(O)(A,B,S) + et“)(A,B,e) + 0(52) .

We use (6.27) in {6.25) and (6.26), and equate explicit powers of €.

the coefficients of eo we find that

?‘
£ 0 0 (0
» (D ycel =0, Vamm=a,
& (0) (0) _ (0) _
!\‘. xB - cot:B o , t (A,B=A) =0 .
=
- The solution to (6.28) is
.
j X(O) =% (a+B) ,
K (6.29)
é c.t'? = Yp-ay .
- 0 2
.
Equating the coefficients of 81 and using (6.29) we find that ulM

(1)

and ¢ satisfy
200 il 0 ) a,B=a,e) = c_(qa(a,Ase
Y=-1 °a A as 0 '€ B=R, Solaa,A/E)
(6.30)
2 (0 bt =0 (V) (a,B=n,€) = c_£(a,a/€)
Y-1 B Yp A+B ¢ u =Ry Co*tAr :

Also x"’ and t(1) satisfy

(1) (1 _ () (1) (1), o -
X, o+ cotA = {-¢c +u }/2c0 ¢ x '(A,B=A,€) o , |
(6.31) 5
n _ (M _ 1) (N (1) - _ !
Xy Soty = {c +u }/2c0 , t' '(A,B=A,E) =0 .

Equations (6.30) have the same form as the linearized gas dynamics
equations, so we can write down their solution. For plane flows (N=0) the

solution to (6.30) is

-30-
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c(1)

(n,B,€) = po(A,A/e) + qO(B.B/E) ’

(6.32)

u(1)(A,B,€) =315 {po(A,A/E) - qo(B,B/E)} ’
where

Co Y'

py(A,A/€) = 5= {55~ £(a,a/€) + g(A,A/€)}
(6.33) o

q,(B,B/E) = 5 9 (- (——-)f(B B/€) + g(B,B/E)} .

For spherically symmetric flows (N=2} the solution to (6.30) is

1) _
(A,B,€) = A+B {pz(A A/€,€) + q,(B, ,B/€,€)}

(6.34)
(1) _ 2 2 - -
u (A,B,g) = ¥-1 A+B(p2(A +A/E,€E) qz(B,B/E,e))
-—2— (p,(a,0) - 0,(B,EN} .
(A+B)
In (6.34)
4 C
p,(a,a/€,8) = - P,(A,€) = 5~ {——- Af(A,A/E)
+ L1 A saraveraat + agaaze)}
(6.35)
a o0 , ,y-1
qz(B,B/E,E) Ty Q2(B,e) =5 {-(—5—)Bf(B,s/s)

- 1§1 /B £(8',B'/€)aB’ + Bg(B,B/E)} .

We integrate (6.31) to find x‘') ana t'1 in terms of (1) and

u(1), and use the result and (6.29) in (6.27). After rearrangement, this

gives the following expressions for A and B




IR S

TTET WG A

(V) (a,B',€)}aB' + 0(e?) ,

et v et - B (V) L,
A=x-cgt 30 [ e (a,B'e) +u

(6.36) (1)

B=x+cpt+s— [ (cMase -uVansenar +oe?) .

0 2co

In (6.36) c(1) and u(1) are given by (6.32) when N = 0, and by (6.34)
when N = 2,

This completes the solution of (6.1) and (6.2) using characteristic
coordinates. The functions ¢ and u are given by (6.27) and (6.32) or
(6.34), while x and t are given by (6.36). Now we show that this solution
equals the solution found using weakly nonlinear geometrical acoustics to
first order in €.

We shall need the following lemma.

lemma 6.1. Let f(x,0) be a differentiable function of x and integrable

with respect to 8 on [([0,®). Define

(6.37) T(x) = 1im & f5 fx.0ra8)

o T
and suppose that f(x) is differentiable and ;
(6.38) £ 0 = tim 3 [T £ (x,0)00)

T-ND
uniformly in x. Then
(6.39) 1m [P g(x,x/e)ax = [ E(xyax .

a a
€+0
Proof: Let L
(6.40) F(x,9) = £(x,8) - £(x) , f
and
(6.41) u(x,€) = f:/e F(x,0)d0 .
Then
1 x/€
(6.42) w =2 roexse) + [N E (x,0000 .
-3




We multiply (6.42) by € and integrate with respect to x over [a,b]. This
gives

(6.43) f: F(x,x/E)dx = € fg/‘ F(b,6)ad - € jg/e F(a,0)ad -

b x/€
- e .
€ fa ax fo F (x,0)d
Taking the limit of (6.43) as € + 0 and using (6.37), (6.38) and (6.40), it
follows that

(6.44) lim j: F(x,x/€)dx = 0 .
e+0

Then (6.39) follows from (6.40) and (6.44). B

In fact, with certain additional assumptions on f(x,9) it is shown in [11]
that as € + 0
fﬁ £(x,x/€)dx = f: f(x)dx + 0(€) .

We shall also need the following three equations. From (6.16) and (6.36)

/]
[
»
n

X - cot =8s_ - A+ 0(ge) ,

(6.45)

]
1]

]
™

1]

X+ c.t

0 , = B_=B+o0(e) .

Then if h(x,y,8,0) is any continuously differentiable function of x and
Y, using (6.45) and expanding in a Taylor series about A = x - Cote
B=x+ cyt we have

(6.46) h(A,B,A/€,B/E) = h(x~-c

t,x+c.t,A/€,B/E) + 0(g) .

0 0

Finally suppose two continuously differentiable functions ;(A,B) and
;(x,t) are related by
w(A,B) = w(x,t) + 0(¢) .

Then using (6.45) and expanding in Taylor series we have
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x+c_t

B~ .o, 0" -
[y wia,B')d8 fx_cot wds, + 0(€) ,
(6.47)
x+c .t
B~ . 0" -
[, wa',Braa fx_cot wds_ + 0(€) .

In (6.47) the integral with respect to s, is taken keeping B+ congtant and
the integral with respect to s_ is taken keeping B_ constant.

Now we compare the two solutions. We take the plane and spherical cases

TG

separately and consider plane flows first. Using (6.13), (6.22) and (6.33) we

T

can rewrite the solution (6.32) for c(1) and u(1) as
c(1) (0) (0)

ﬂ (A,B) = C(A,B) + c,F,  (AA/€) + ¢ F." (B,B/€) ,
3 (6.48)
. 2¢c 2c
| o Nae = 3am + e aae - 2V meze
[n" ’ In (6048)
c(a,B) = B (R) + qg(B) ,
(6.49)
-~ _ —2__ - - -
u(a,B) = 755 {p (&) - q (B} .

Now using (6.12) and (6.46) in (6.49) we have

S(A,B) = &(x,t) + 0(g) |, O
(6.50) !

W(A,B) = ulx,t) + 0(€) .

We use (6.46) and (6.50) in (6.48) to obtain

c"’(A,B) = E(x,t) + corio)(x-cot,A/E) + coFio)(x+cot,B/e) + 0(€)
(6.5::) - 2%, (o) 2%, (0
u (A,B) = u(x,t) + -1 F, (x-cot,A/e) Ty F_ (x+c0t,B/€) + 0(g) .

Using (6.51) in (6.27) and comparing the result with (6.8) and (6.20) we see
that the two solutions for ¢ and u agree to 0(¢) provided that
(6.52) A/E = /€ + 0(€), B/€ =L /e + 0(€) .

To show that (6.52) does hold, we use (6.48) in (6.36), and integrate.

This yields
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(0)(A A/E) E-ﬁ + % %11 /2% s, B /e)am

A = x-ct ~ € Y_1 A
B '
2c Iy (S(a,B*) + 3(a,B')}dB’ + 0(e?) ,
(6.53)
_ Y+1 ( ) A _ € 3-Y (0), .4 4 .
B = xtcgt + € 1= F_ (B,B/€) AR 5 -—?-IA F, '(A',a'/e)da
B L} t 1
2c f {S(a',B) - u(a',B)}dB’ + 0(e?) .
Now from (6.22) FLN)(x,e) has zero mean over 6, and therefore using
lemma 6.1
BeMarat/ea = o)
(6.54)
IB N)(gr,B'/€)aB' = 0(e) .

Also using (6.50) and (6.47) with w =

I: {c(aA,B') + u(A,B')}dB'

(6.55)

f: {e(a',B) - u(A',B)}dan’

We use (6.46), (6.

_ Y+1
A = x cot € ;:T
(6.56)
+
B=x+c0t+€H

Comparing (6.56) with
true for plane flows.

agree for plane flows.

~ ~
= ¢ £t u we have

X+c t
0 - -
= [ie o {ctulas, + o(e) ,
0
x+c_ t
=f 0 (c-Glas + o(e) .
x-cot -

54) and (6.55) in (6.53). This gives

(0) xt+c_ t _ 2

N (x*cot A/C)c t - e x_cot{c+u}ds+ + 0(€“)
X+C t

(0)(x+c t, B/e)c £+ — {c-u}ds + 0(62) .

0 2c0 x- cot

(6.23), and using (6.5) and (6.24), shows that (6.52) is

This completes the confimation that the two methods

g




Next consider the spherical case. Applying lemma 6.1 to (6.35) we have

C

=4 =0y
pz(AlA/ele) = aa PZ(A,G) =3 { 3 Af(A,n/E) +
+ Igl /> Eavyant + ag(a,ase)} + o(e)
(6.57) .
- =0 X1 -
q,(B,B/€,E) = = 0,(B,€) = o= {-(—5")Bf(B,B/¢)

Y-1

=4 [P E8*)an' + Bg(B,B/E)} + O() .

-
Integrating (6.57) to obtain P, and Q, and applying Lemma 6.1 again gives

[o]
=_0 Y__l A vEran ' m Az . "
P,(a,8) = = {—= [T a'f@nan’ + 5 [° E(amaan +

+ A arganiant} + oe)

Q
o

(6.58) (A,€) = 5= {-(Igl) /B B'E(B")aB' - (131) /B E(s")aB" +
B -
+ /7 B'g(B')dB'} + 0(e) .

Thus from (6.58)

PZ(A,S) = P2(A) + 0(g) ,
(6.59) )

Qz(A,G) = QZ(A) + 0(g) ,
where from (6.15)
(6.60) L5 =p.a), 5 (8 =q(n

y an 2 Py{A)s 5 9 9, .

Now using (6.15) and (6.22) we can rewrite (6.57) as

- (2) \
pz(A) * c F, (A,A/€) + 0(e} ,

pz (A,A/€,€)

(6.61)

a,(8) + ¢ r ¥ (m,8/e) + 0(e) .

qz(B.B/e,E)

Then we use (6.59) and (6.61) in (6.34) which gives
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2c

c(1) = c(A,B) + KIE {r (2)(A JA/E) + F( )(B,B/E)} + 0(e) ,

(6.62)
(1)~ 2 2% (2) (2)

u "= ua,B) + o7 oo {F T (a,aze) - F7T(B,B/6)) + 0(e)
In (6.62)

-~ __g‘_ - -

c(A,B) = B {pz(A) + qz(B)} R
(6.63) - 2 2 4 - _

u(a,B) = =5 <= {p,(A) - a,®} -5 r,(a) - (B)} .

Y A+B 2 Y1 (a2 2 2

We use (6.46) and (6.14) in (6.63) which leads to (6.50). Then we use

(6.46) and (6.50) in (6.62) and find

c
c(1) = E(x,t) + ;2 {F (2)(x-c t,A/E) + F( )(x+c0t,B/E)} + 0(e) ,
(6.64)
(1 _ = 2 %0 (z) - _ (2
u = u(x,t) + — 71 % { (x cot ,A/E) F_ (x+cot,B/€)} + 0(g) .

Using (6.64) in (6.27) and comparing the result with (6.8) and (6.20) we see
that the two solutions agree provided (6.52) holds.

To show that (6.52) holds for spherical waves, we use (6.62) in (6.36)
which gives

(2)(8',3 '/€)

o _ (2) A+B 3-y (B -

A =x cot € Y'1 (A A/€)109(2A ) € Y-1 f}\ A+B' as’

- 3:— IB {c(a,B') + u(a,B')}dB' + 0(e) ,
o
(6.65) (2)
(A',A'/€)
- eI A+B 3-Yy (B e
B = xtcjt - € o F '(s, B/E)log( 55) - ( ) f A'+B dn'

€ B (% TS '
" Te [, {e@a',B) - ua',B)}aa’ + o(e) .

-~

Now we use (6.46), (6.54) and (6.47) with w =c¢ + u in (6.65). The

result is

-37-




x+c_ t

Y+1 _(2) £ Pty
B=xcpt - 4 F " (x cot,A/EZ)log(x_cOt) e, fx-cot {c+ulas, + 0(e) , :
k (6.66)
3 x+c . t
3 . o X1 _(2) .S € c-u
B x+cot € _Y-1 F_ (x+c0t,B/e)1og(x+cot) + 2c0 fx-cot {c u}ds_ + 0(e) . 3

Comparing (6.66) with (6.23), and using (6.5) and (6.24), shows that (6.52)
holds for spherical flows. Thus, weakly nonlinear geometrical acoustics and

the method of characteristics agree to first order in the wave amplitude €.
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7. Resonance Conditions

Equations for v(x) and a(j)(x,e) were found in section 3 as
solvability conditions for (3.4). 1In this section we show that there can be
solvability conditions additional to those considered in section 3, and that
the solution derived in section 3 satisfies all these solvability conditions
whenever the resonance condition (2.15) does not hold for distinct j and
k at any x. Even if (2.15) does hold, and there is the possibility of
resonance, the solution derived in section 3 may still be valid and we give
necessary and sufficient conditions for this to be the case.

We abbreviate (3.4) to
(7.1) 73 IR SN TU PN

j=1 i=1 i 3

We have dropped the superscript on v(1)

and omit showing any x-dependence
explicitly, because x 1is effectively constant in (7.1). We shall derive
conditions which £(8) must satisfy if (7.1) has a bounded solution for
v(B).

In fact all we require on v(8) is that
(7.2) v(0) = o(|6l) as 8] + = ,
Then using (7.2)

(1)(

v M e, 0™ ey = 0(1) as e+ 0 ,

and the asymptotic expansion (3.2) remains valid when Bj is evaluated at

(i)

¢ 7" /e,
If v(0) satisfies (7.2) then
(7.3) lim {3 [T vy 0.} =0 .
T')OTO jJ

That is any derivative of v(9) has zero mean.

-39~




re

Therefore averaging (7.1) with respect to 8 we find as in section 3
that £(0) has zero mean, which gives (2.4) for the mean v of v(O)(O).
Next suppose that there is a vector A = (A1,...,Am) such that
m .
(7.4) 7oA g
j=1

where p = (p1,...,pn) satisfies (2.15)

Denote by L the left null vector of Z pi (i). We assume throughout

i=1
this section that (2.1) is strictly hyperbolic, so L is uniquely defined (up

to a scalar factor). Also let

m
(7.5) o= J A8, ,
gmq 33
and define the hyperplane S(0) by
(7.6) S(0) = {6 e R" : 0 = constant} .

Then we average (7.1) with respect to 9 over S(d). To do this

introduce coordinates (c,n1,...,nm_1) in R®, where the nj depend

linearly on 6. Then using (7.5), (7.1) becomes

m m-1 m n
an 33 Ry R SR S ) 3—5 oMy ey
=1 i=1 k=1 3=1 1=1 °°3 %y K

Now we average (7.7) over S(0), integrating with respect to n1,...,nm_1,

when the mean of the terms proportional to i is zero from (7.2). Then we
k
take the scalar product of the result with L, which makes the coefficient of

\'4 zero. Therefore

c
(7.8) L(f)avs =0 .
In (7.8) (f)avs is the average of f over §(0).
T T
(7.9) (£) = lim {—— [ ---I f£an...an .} .
avs e Tm- m=-1
Thus (f)avs is a function of .
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In general it is possible for there to be many vectors A such that

z Aj¢iJ)A(l) has a given left null vector L. The set of all such A forms
i, 3 i
a vector subspace of R®. pick a basis {A1,...,Av} of this space, where

A, = (A eeesA, ), and define ¢ and S(0) analagously to (7.5) and

2 L1’ m L
(706):
m
0‘1 = .z ijej (2 = 1,-..,\)) '
3=1
(7.10)

s(o) = {6 e & : (0 se++,0,) = 0 = constant} .

Then exactly as before we obtain the solvability condition (7.8). We
obtain one such condition for each subspace S of the kind defined above.

Next we show that the solution (3.6) for v(o)

always satisfies these
solvability conditions if (2.15) never holds. Using (3.6} in (3.4) and

comparing with (7.1) we obtain

n
(i)- (i)= (0) -
(7.11)  -£(x,8) z {a Ve tA T vul } + BV

i=1 i i

m n .
+ 2 X {A(l)R(k)aik) + ¢)((k)A(i)vR(k)aék) + Q(k)a(k)}
k=1 i=1 i i v x
m m n . . .
+ z 2 Z ¢(J)A(1)R(k)a(£)a(k)a(3)
. , X, u 9.
=1 k=1 i=1 i 3

In (7.11) 0%} ig defined by (3.9).

Now we claim that the conditions (7.8) are satisfied for f given by
(7.11), with v satisfying (2.4) and a(j) satisfying (3.8), if and only if
the nonlinear terms

m j=-1 m . . . . . .
(7.12) § I ] (& ¢i3)néi’n(k)n(3’a(k)aé3) + L ¢(k)A(1)R(J)R(k)a(J)aéf)}

J=1 k=1 i=1 i j * v j

have zero mean over S(0). The reason for this is as follows. The first

three terms in (7.11) proportional to v sum to zero by (2.4). The terms

-d 1=




(k)

linear in a and the nonlinear term proportional to

a(k)a(k) -1 2 [a(k)]2 have zero average over S(0) unless 8
Bk 2 aek k
constant on S(dg). If 6 is constant on §S(0) then we must have

k

and then the scalar produce of the sum of these terms with L is ze

(3.8).

is
L =1,

ro by

Thus a necessary and sufficient condition for the solution derived in

section 3 to satisfy the solvability conditions (7.8) is that the terms (7.12)

have zero mean over S(g). However, suppose that ej and ek are not

constant or functionally dependent on each other on §(¢). Then we can use

n1 = ej and n2 = ek as two coordinates on 8(0), and the mean of
over S(0) is clearly zero.

If Gj and ek are constant or functicnally dependent on each

then we must have for some cj(x), ¢ (x) and (u1(x),--.,uv(x))
v
. 6, + 8 = .
(7.13) c 8, + o8 £ u,o

Using (7.10)

v
E uzkz 6 .

(7.14) ¢c® +c¢c 0 =
JJ 1 2=1 rr

k k

0t~

r

Since (7.14) holds for all 6, in particular it follows that

v
c, = A,.
J 221 ERCEN
(7.15)
v
% = 221 Mlax
T (r), (i)
But by the definition of xlr' Z X2r¢x A has left null vector
r=1 i
£=1,...,Y. Therefore if p is defined by (2.15) using (7.15) the
n
Z piA(i) has left null vector L, and (2.16) must hold.

i=1

(7.12)

other

L for

matrix




This proves that if (2.15) and (2.16) do not hold at any x for
distinct j and k, then the mean of all terms (7.12) over S(0) is zero,
and v and a(j) satisfy the solvability conditions (7.8). On the other
hand, suppose (2.15) and (2.16) do hold for some pairs {3,k}. Then the
solution described in section 2 is valid if and only if for each pair {j,k}
the average of the term (7.12) is zero over the space 8S(0) corresponding to

n
the left null vector of L of 2 piA(i).

i=1
In section 3 we took a particular form of solution for ¢ and v(0) o

(3.3). We have shown that this is sufficient provided that re- -'31~—-e does not

occur. To treat problems involving resonant interactions a more general form

(0)

of solution to (3.3) for ¢ and v must be used.
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8. Multiple Characteristics

In this section we generalize the results of section 2 to the case of
multiple characteristics for a large class of systems. This class includes
systems derived from a set of conservation laws.

Let us regard the eiconal equation (2.6) as an equation for ¢x . where
1
we can suppose that x4 is a timelike coordinate. Equation (2.6) is an m-th

degree polynomial in Qx . We denote its m real roots by
1
gj(x,¢x ,...,¢x ) Suppose that (2.1) has multiple characteristics. Then Vv
2 n
of the gj's will be the same. We suppose 95 = 9, for j = 1,e4.,V.

(3) (1)(

Therefore we shall take ¢ (x) = ¢ x) and Bj =90 for j = 1,4e4,V.

1

We assume that the multiplicity VvV does not change, and we also agssume that
there is no resonance i.e. that (2.15) never holds.

We use (3.2) in (3.1) and use the result in (2.1). Equating to zero the
coefficient of eo we obtain (3.3). Setting each term in the sum over m
equal to zero gives (3.5). We take as solutions to the eiconal equation

(1) (v+1)

(2.6), ¢ (x), ¢ (x),...,¢(m)(x). To simplify notation we suppose that

the other families of characteristics are simple. This does not affect our
final results which are the same whether or not there are other multiple
(J).s

characteristics. In fact, several of the ¢ can correspond to the same

multiple characteristic.

Once the ¢(J) are determined v(o) satisfies (3.5). The matrix
T L (), (d)
2 ¢x Au has a null space of dimension v. We denote by
i=1 i

(V)}

{R(1),...,R a basis of the space of right null vectors, and by

{L(1),...,L(v)} a basis of the space of left null vectors. We write v(o)
as
(0) - M ( T '
8.1) v'x,0) =)+ J a(j)(x,61)R Py 7 a6 R
b
=1 j=v+1
Then v(0) clearly satisfies (3.5).




The only difference between (8.1) and (3.6) is that in (8.1) the first

v ald! all depend on the same fast variable 91-

Equating the coefficient of € to zero we obtain

m n n
_ X X ¢Lk)h(i)vé1) - 2 {A(i);x + Aii);uLO)} + Bu;

k=1 i=1 i kK  i=1 i i

T 7 (k). (1) (k) (k) (), (i)=_(k) (k) (k)
(8.2) + X Z {(ax A'T'R + ag ¢x A'TVR'T)Y + a2t )
k=1 k=1 i k %3 ¢
m m n .
e 33 a(k)aél) ) ¢,(‘z)A‘ix)R(k)R(z)

k=1 &=1 Loi=1 %3

In (8.2) Gj is taken equal to 01 for j = 1,...,V. Now equation (2.4) for

v(x) follows from (8.2) by averaging it over 6 provided that the mean of
(J)aé:)
In fact this is not always the case when there are multiple

(j)(x,91)aék)(x,91) is not necessarily zero

1
when j # k, and 1< j, k € V. 1In general the terms [a(j)aék)]

1,.
together the equations for the mean v(x) and the amplitudes a(J)(x,61).

the nonlinear terms proportional to a is zero.
characteristics. The mean of a
ave couple

However we shall show that the mean of the nonlinear terms is zero for
systems which satisfy the following condition.

Condition 8.1. For all 1< j, k € v;

n . n .
(8.3) PSRRI CRIRE RO SIS EPI O MED

i=1 %3 ¢ i=1 %1 ¢

If there are other multiple characteristics they also satisfy the analagous
equation to (8.3).
From (4.14) condition 8.1 is always satisfied by any system which is

derived from a set of conservation laws. We now show that the mean of the
(3) (k)
g

, k
both a'd) ana a(® depend on 91.

terms a is zero. Trouble can only arise when 1 € j, k € V go that
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If j =k then
(3)_(3) 1 0

a'a ==

91 2 361

[a(J)]2

Thus a(J)aéJ) is an exact derivative and has zero mean, since a(J) is a
1
bounded function of 01. If j # k we consider the terms proportional to

a(j)aék) and a(k)aéj). From (8.2) these are
1 1
n . . . n . .
(8.4) Z ¢(1)A(1)R(J)R(k)a(3)a(k) + 2 0(1)A(1)R(k)R(J)a(k)a(J) .
. x u -] . X, u ]
i=1 i 1 i=1 i 1

Using (8.3) we rewrite (8.4) as an exact derivative

n > . a .
(8.5) ) ¢i1)AéL)R(J)R(k) - (al3), %),
i=1 Mi 1

Therefore (8.4) averages to zero. This shows that v(x) satisfies (2.4).
To obtain equations satisfied by a(j) for j = 1,...,V we average

(8.2) over (6 ,...,Bm) and take the scalar product of the resulting

V+1

equation with L(p)(p = 1,e¢4,V)e Then we find the same equations as those

obtained by Choquet-Bruhat [1]:

v n . . v \Y n . . .
E Z L(p)A(i)R(J)a’(‘J) + X Z z L(P)¢’((1)Afl”R(k)R(J)a(k)aéJ)
j=1 i=1 i =1 k=1 i=1 i 1

(8.6)
v n . . v . .
) L(p)¢i1)A(1);R(J)aéj) P S 2N NG
j=1 i=1 i Y 1 j=1

We have the following lemma:

Lemma 8.1. There are scalar functions ci(x), for i = 1,...,n, such that

for all j= 1,..0") and p=1'tnc'v=

L(PIA(1Ig(3) 2 ¢ 1 (PIp(d)

The proof of lemma 8.1 follows that of Lewis [12] almost exactly.
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Using lemma 8.1 in (8.6) we find

\Y n . \Y \Y n . .
(8.7) ) ) L(p)R(j)aéj) + 3 ) L(p)¢i1)hii)n(k)k(3)a(k)aéj)
§=1 i=1 j=1 k=1 i=1 i 1

v n v R .
+ 2 Z L(p)¢’(‘1)A(i);R(j)aéj) + z L(p)Q(J)a(J) =0
j=1 i=1 i v 1 3=1

(p=1,¢e0.,V)
In equation (8.7), 0 is defined by

dx

1 = ci(x) .

(8.8) 30

Equation (8.7) is a system of quasi-linear equations for the Vv
scalars a(j) in two independent variables ¢ and 61.
Equation (8.7) reduces to a system of ordinary differential equations in

the special case that there are A(x) € R and u(x) € R such that

n
) L(p)¢(1)n(i)n(k)n(j) - XL(p)R(j)G

41 x; u jk !
(8.9)
n N
Z L(p)¢;1)a(i);R(j) - m:‘(p)R(J)
i=1 i ¢
-47-




e )

bk Can i

M ok o

e
b

Appendix
In this appendix we specialize the results of section 2 to the gas

dynamics equations

+ i =
Py div(pu) =0
(A.1) pu,_ + puVu + Vp = 0

p=xp .

Equations (A.1) are the equations of motion for the isentropic flow of a
compressible, inviscid, ideal gas. In (A.1) p is the gas density, p the
pressure and u the velocity of the gas. The gquantities Kk and Y are
constants.

The weakly nonlinear geometrical acoustics solution (2.2) to (A.1) for

x and u in n? is

p p (x,t) pix,t) m
(i) (3) (3
(a.2) | | = +e|_ +e 1 allxted@©@r 7 (xe)
u U(x,t) ul(x,t) j=1
m|
+€ ) {a(k'1)(x.t.w(k)/s)n(k'1)(x.t) + a(k'Z)(x,t.w(k)/E)n(k'z)(x.t)}
k=1 )
+ 0(e%) .

In (A.2) (DO,U) is any exact solution to (A.1). The mean value of the
perturbation in (p,u) about (pO,U) is (eB,eG). The sum over j
represents a superposition of high frequency sound waves, and the sum over
k 1is a superposition of high frequency vorticity waves.

The means (5,6) satisfy (2.4) which gives the acoustics equations

pt + dxv(pou +pU) =0 ,
(A.a)

- 2=~ - -
v + + YU = .
pouT + (cop) pUT pou U 0




In (A.3) €p is the linearized sound speed

-14
(A.4) cy = (xvey 2,
]
and 37 is the derivative taken along the streamlines of U
9 _ 9
(A.5) prIEl ol gL LA

The eiconal equation (2.6) for (A.1) when x € R® is

2 2 2, .n-1
Y - v = .
(AR.6) (0 = 17819, Y
The phase functions ¢(J) and w(J) in (A.2) satisfy
(jy,2 _ 2 (3),2 _ (k) _
(A.7) (¢T ) colv¢ | o ., WT o .
We consider the sound waves (which depend on ¢(3)) and the vorticity waves

(which depend on ¢(k)) separately.

For the sound waves the rays (2.7) corresponding to ¢(j) are given by
at NG D) dx sy eI 20.(3)
(r.8) as uj¢T * 3s.| uj¢T U ujc0V¢ '
3 Bj 3 Sj

and the vector R(j) is given in terms of ¢(j) by

L =2, (3)
1) 0% *r
J) _ Aj

(A.9) R

The scalars uj(x,t) and A ,.(x,t) in (A.8) and (A.3) are arbitrary functions

3

which may be chosen in whatever way is convenient.

The amplitude a(j)(x,t,¢(j)/e) of the jth sound wave is given by
«9). F A.1 . ] i
(2.9) or ( ) EJ(sJ Bj) is
(3) (3) 2
. 5. ¢ _-"~4d . Yc .
(3 _ i TT _X=1  (3) . __0 ove ()
(AR.10) E exp fso { 2 3 ¢T div U 290 Voo v¢ }ujdsj .

The integral in (A.10) is taken along the rays (A.8). The first term in the
integrand gives the change in the wave amplitude due to changes in the ray
geometry. The second two terms in the integrand give the change in the wave

amplitude due to inhomogeneities in the zeroth order flow p =p_, u = U.

0
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The modified phase function Cj in (2.9) is defined implicitly by (2.11)

which becomes

S
(3) _ ¢ X1 j (3),3 -2 ,
. = - € —F,(B.,5_./€) A, ) E.u_ds!
ty= ¢ 7 Fy(Byey/ fso N N N

S S.
j  (3)=,g,(3) =1 (%3, (5) 2= -1

—e [ o M uevet iy ast + e = Tl )%00 9 ast
Sy T o3 2 Sy T 0 '3 3

If shocks form they are fitted into the solution using (2.13).
The phase function w(k) for the vorticity waves corresponds to a
characteristic of multiplicity n - 1 when x € R?. For three-dimensional

flows the characteristic has multiplicity two. Therefore as explained in

section 8 we obtain two null vectors R(k’1) and R(k'Z) for W(k) and two

amplitudes a(k'1) and a(k'Z) which are coupled together. The equations

satisfied by a(k'1) and a(k'z) happen to be linear for (A.1).

The null vectors R(k’1) and R(k'2) are given in terms of w(k) by

(0 ] [0 ]
¥ 0
(k,1) _ x (k,2) _
(A.12) R = Ak 2 , R = Ak R

(K oK)
X, X3
o -w,‘(")

- - . 2J

In (A.12) Ak(x,t) is an arbitrary scalar. To put the equations for

a(k’1) and a(k'z) in their simplest form it is convenient to let
- ' N - -
(w:k) yx .
2
(x){ _ (k,1) |_ (k) (k,2) (k)
(A.13) Y2 =Aa “’x1 *Aa "’xs [ .
w;k] 0 _wik)
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Then w(k)(x,t,w(k)/e) is a velocity vector orthogonal to Vw(k) and
satisfies -
(k) (k)
- v . oV

(A.14) w(k) + u'Vw(k)w(k) + w(k)'VU _ W (w U Vw(k) =0 .

T g (k),2

IV "0
(k) (k) . .
We solve (A.14) for w (x,t,0) and evaluate ¢ at V /€. When U |is
k
independent >f x (A.14) gives three uncoupled equations for w:k), w; ) and
w(k)
3 L]

We may want to use the local sound speed c(x,t) as a dependent variable
instead of p(x,t). They are related by

Then we seek a solution

c co(x,t) clx,t)
= + € +€ ? a(j)(x,t,¢(j)/€)R(j)(x,t)
u U(x,t) u(x,t) =
{A.16)
+ € § {a(k'1)(x,t,¢(k)/E)R(k’1) + a(k'2)(x,t,w(k)/e)R(k’Z)} + 0(52) .

k=1

In (A.16) c = Cor U = U 1is an exact solution of the gas dynamics

equations. The means c¢ and u satisfy

- Y'1 . - Y"‘ - . -
— — -V =
cT + > c0 div u + > c div U + u co o .,
(A.17)
- 2 - -
<~ _ v ey = .
u, + =1 (coc) + u*Vu 0

the R{I) in (a.16) are given by
-(Y-1)¢éJ)/2co
(3)
(Ao18) R = A, ’

] .
%(J)

where Aj(x,t) is an arbitrary scalar. The remaining equations are exactly

(3)

satisfies (A.7), a(j) is found from (2.9), (A.10) and

as before: ¢

T At it St




._..;}.,

(A-“) With Yz;‘ S/po = -c./co’ q)(k) satisfie‘s (A.")' R(kl1) and R(k'z) are

given by (A.12) and w(k) satisfies (A.14).

The equations for plane flow (x e R?) are obtained from those above by
suppressing the x3-dependence and setting a(k'z) = 0. The equations for one
dimensional flow follow by suppressing the X, and x3-dependence and
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